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Abstract
The current response of a mesoscopic system under a periodic ac bias is investigated by
combining the Floquet theorem and the nonequilibrium Green’s function method. The band
structure of the lead under ac bias is fully taken into account by using appropriate self-energies
in an enlarged Floquet space. Both the retarded and lesser Green’s functions are obtained in the
Floquet basis to account for the interference and interaction effects. In addition to the external
ac bias, the time-varying Coulomb interaction, which is treated at the self-consistent
Hartree–Fock level, provides another internal ac field. The numerical results show that the
time-varying Coulomb field yields decoherence and reduces the ringing behavior of the current
response to a harmonic bias.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

With the fast development of technology, people are now
empowered to fabricate conductors on the mesoscale and
nanoscale [1]. The linear or nonlinear response of the
mesoscopic system to an external driving field can be used
to reveal the underlying physics in the quantum regime [2–6].
Comparing with the stationary field, a time-varying one can
provide an effective way to modulate the quantum phase of
wavefunctions [7]. For chaotic quantum dots, this modification
of phase evolution gives rise to a variety of mesoscopic
phenomena ranging from the conductance fluctuations [8–10]
to the dynamical localization [11, 12]. The ac effect
on these properties can be statistically described by the
diagrammatic Green’s function method or using random matrix
theory [13]. For small open quantum dots, time-dependent
transport has been studied by the nonequilibrium Green’s
function method [6, 7]. There, a general expression for the
current under an arbitrary ac field is expressed in terms of
double-time functions which are nontrivial for either analytical
or numerical simulations. As a matter of fact, the solutions
of those general formulas rely on approximations such as
the wide-band limit. However, this approximation becomes
inapplicable in situations, such as that of molecular electronics,
where the system response is sensitive to the band structure.

Recently, particular interest has been attracted by the
quantum charge/spin pumping [14, 15], where a dc current
is generated by a periodic driving field at zero dc bias.
Fortunately, instead of having to solve an arbitrary nontrivial
time-dependent Schrödinger equation, the periodic condition
imposed by the ac field makes the power of the Floquet
theorem available [16–19]. By combining the Floquet
theorem and the scattering matrix method [20], the quantum
pumping of charge or spin current beyond the adiabatic limit
has been investigated. More recently, a retarded Floquet–
Green’s function [21] was derived in the wide-band limit for
investigating the transport properties of molecular wire driven
by an ac field. A coherent suppression of the current and
shot noise by the ac field is predicted, though the validity
of the wide-band limit on the molecular scale is unclear.
To circumvent the wide-band approximation, a more general
treatment of the lead structure was then proposed [22, 23] by
using a tight-binding description of the static lead.

Although the quantum interference in these studies is well
accounted for, the nonequilibrium distributions and interaction
effects are much less studied. As a matter of fact, in these
studies, only the retarded Floquet–Green’s function is needed
to find the current or noise properties. The nonequilibrium
occupation in the conductor which may be important in the
presence of interaction effects is not characterized. Moreover,
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the ac field in previous studies is confined to the conductor
regime which may origin from either an oscillating gate voltage
or a microwave (infrared) laser. However, if the system is
driven out of equilibrium by an oscillating bias as in [7], a
direct application of the formalisms mentioned above becomes
improper since electrons in the lead are no longer equilibrium;
instead their energies as well as phases can vary with time.

In this work, with the help of the Floquet theorem and
nonequilibrium Green’s function method, the general formula
for time-dependent transport proposed by Jauho et al [7] is
reformulated using the Floquet–Green’s functions for periodic
ac bias. With the Floquet theorem to hand, we work in an
enlarged Hilbert space to bypass the nontrivial double-time
functions in time-dependent phenomena. Both the retarded
and the lesser Floquet–Green’s functions are obtained from
the Keldysh equation in the time domain to account for the
interaction effect. The ac bias in leads is well incorporated
in the formalism by the appropriate self-energies beyond the
wide-band approximation. The Coulomb interaction is self-
consistently included under the Hartree–Fock approximation.
As an example, the Floquet–Green’s function formalism is
applied to investigate the transport properties of quantum dots
in the presence of harmonic bias.

This paper is organized as follows. In section 2, the
Floquet–Green’s function formalism is presented for a driving
system represented by a tight-binding Hamiltonian. General
expressions for the current and the retarded and lesser Floquet–
Green’s function are presented. As an example, we apply the
formalism to the ac transport of a quantum dot with Coulomb
interaction in section 3. The quantum response to a harmonic
ac bias is displayed and the Coulomb effect on the ac response
is discussed. Finally, a brief summary is presented.

2. Theory and formalism

2.1. The Hamiltonian and the general expression for the
current

The model system studied here is a one-dimensional quantum
wire. It is composed of an interacting central site (i = 0) with
its left (i < 0) and right (i > 0) leads. The tight-binding
Hamiltonian with nearest-neighbor hopping can be given by

Hd =
∑

iσ

εα(t)c†
iσ ciσ +

∑

〈i j〉σ
tαc†

iσ c jσ + Uc†
0↑c0↑c†

0↓c0↓, (1)

where c†
iσ (ciσ ) is the electron creation (annihilation) operator

at site i with spin index σ (σ = ↑ or ↓) and the Coulomb
interaction in the central site is accounted for by a charging
energy U . εα and tα are the on-site energy and the nearest-
neighbor hopping term where α = L, R or C, represent the
left (i, j < 0), right (i, j > 0) and central parts (i ∗ j = 0)
respectively. Suppose a time-periodic bias is applied to the
system [7]; the on-site energy εi then becomes time varying
with the same period T . For simplicity, the ac strengths in
the αth parts are assumed to be uniform but may not be equal
to each other. This ac bias will make the electron energy
become time dependent and keep the occupation unchanged.
The on-site energy εα can then be expressed in the Fourier
expansion due to the periodicity as εα(t) = ε0

α + ∑
k V α

k eik�t ,

where ε0
α is the static energy and � = 2π/T . In order to

make the Coulomb interaction term more tractable, we adopt
the Hartree–Fock approximation [24], i.e., the replacement
Uc†

0↑c0↑c†
0↓̂c0↓̂ → U(n↑c†

0↓c0↓ + n↓c†
0↑c0↑) was introduced,

where nσ = 〈c†
0σ c0σ 〉 is the on-site population with spin

σ . In the presence of a time-dependent field, it should be
determined self-consistently as a function of time. As the
Hamiltonian is periodic in the time domain, the evolution
of the whole system should be a periodic function with the
same periodicity. Therefore, the time-dependent Coulomb
potential which depends on the occupation can be expressed in
the Fourier expansion as Unσ̄ (t)c†

0σ c0σ = ∑
k Ukeik�t c†

0σ c0σ .
As a consequence, the time-dependent response is due to
the interplay between the external ac bias and the Coulomb
interaction. As the spin degeneracy is conserved in the
Hamiltonian, we will drop the spin index and the unit h̄ = 1 is
used in the following for simplicity.

In the presence of a time-varying field, the time-
translational invariance is broken. The functions are no longer
all determined by the difference of the two time labels as in
the stationary case. Instead, they depend on the two time
labels separately. The widely used retarded (r)/advanced (a)
and lesser (<) Green’s functions are defined as

Gr/a
i j (t, t ′) = ∓i�(t − t ′)〈{ci(t), c†

j (t
′)}〉, (2)

G<
i j(t, t ′) = i〈c†

j (t
′)ci(t)〉. (3)

As the system is driven by a time-varying field, the current
is a function of time. For the tight-binding Hamiltonian
discussed above, the current from the left lead can be given
by

JL(t) = 2 · 2et−1,0 Re[G<
0,−1(t, t)], (4)

where the first factor 2 is due to spin degeneracy and the
displacement current is neglected [7]. By using the analytic
continuation rules, the lesser Green’s function can be written
as

G<
0,−1(t, t ′) =

∫
dτ [Gr

00(t, τ )	<
L (τ, t ′)

+ G<
00(t, τ )	a

L(τ, t ′)] (5)

where the self-energies due to the coupling between the central
dot and the semi-infinite left lead are given by

	a
L(t, t ′) = t0,−1Ga

−1,−1(t, t ′)t−1,0

	<
L (t, t ′) = t0,−1G<

−1,−1(t, t ′)t−1,0.
(6)

Here, G−1,−1(t, t ′) is the surface Green’s function of the semi-
infinite lead in time domain.

The current from the left lead to the central dot becomes

JL(t) = 4e Re
∫

dτ [Gr
00(t, τ )	<

L (τ, t)

+ G<
00(t, τ )	a

L(τ, t)]. (7)

This is nothing but the general expression for time-dependent
current [7] in the tight-binding Hamiltonian.
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2.2. Floquet–Green’s functions and the current expression

Let Oi j(t, t ′) represent the double-time Green’s function or
self-energy. Its Fourier transform can be defined as

Oi j (t, ε) =
∫

dt ′ eiε(t−t ′)Oi j (t, t ′). (8)

In the case of periodic ac bias, the function Oi j(t, ε) is
a periodic function with the same period frequency �. Now,
we make use of the periodicity of the ac field to bypass the
nontrivial double-time formalism.

Due to its periodicity, it is more convenient to work within
the Floquet space R⊗T , where R is the real space and T is the
space of time-periodic functions with the set of Floquet bases
|k〉 = exp(−ik�t) with k ∈ Z [17]. The basis in this enlarged
space can be given by |i, k〉 = |i〉 ⊗ |k〉, where |i〉 is the
localized state at site i . This leads to the following expansion:

Oi j(t, ε) =
∑

k

Ok
i j (ε)e

−ik�t . (9)

The expansion coefficient Ok
i j (ε) in equation (9) can be viewed

as the projection of the function O on the orthogonal basis in
Floquet space: Ok

i j (ε) = 〈i, k|Ô(ε)| j, 0〉. A useful relation
between the projections with different Floquet indices is given
by the relation Oik; jk′ (ε) = Oi(k−k′ ); j0(ε+k ′�). Equations (8)
and (9) are important and will be used frequently in the
following derivations. They connect the functions in Floquet
space with their time evolution.

Now, we will derive the Floquet–Green’s functions, i.e. the
Green’s function in Floquet space, as well as the self-energies.
Instead of starting from its time evolution, the retarded
Floquet–Green function can be more conveniently found from
the resolvent [19, 21–23] as Gr = limη→0 1/(ε + iη − H),
where the Floquet Hamiltonian H is defined as H(t) = H (t)−
ih̄∂/∂ t , Its matrix element in the Floquet space R ⊗ T can be
found from

Gr
i,k; j,k′ (ε) = 〈i, k|G(ε)| j, k ′〉. (10)

The advanced Floquet–Green’s function is given by the
conjugate transpose of the retarded Floquet–Green’s function
as Ga = [Gr]†. This relation can be verified by noting the
relation Ga

i j(t, t ′) = [Gr
j i(t

′, t)]∗.
Although the Floquet–Green’s function is straightforward

from its resolvent definition, it is not realistic to obtain the
retarded Floquet–Green’s function by direct matrix inversion
since the resolvent Gr is defined for infinite degrees of freedom.
In real calculations, we use the self-energies to take the
coupling between the central dot and the semi-infinite leads
into account. Meanwhile, once the accuracy is fulfilled, the
infinite Floquet state is truncated to make the calculation
feasible. As the leads are driven by periodic ac bias, the
retarded or advanced self-energies should be determined in
the enlarged space R ⊗ T to contain the ac effect. If there
is no ac bias in the lead, the Floquet Hamiltonian in the
lead is trivially diagonal to the Floquet index k. The band
structures for different Floquet indices are identical except
for the energy shift. However, if the ac strength is nonzero,

Figure 1. Self-energy profiles for the one-dimensional semi-infinite
tight-binding model in the presence (upper panel) and absence
(lower panel) of a harmonic ac field. The upper level shows the
element [EL,r

00 ]00 of the self-energy matrix in Floquet space. The
energy unit is chosen as the hopping term tα = 1. The ac frequency
� = 0.2 and its strength V = 1.2.

the Floquet states in the lead will couple to each other and
complicate the band structure. For the stationary situation, a
well established tool for finding the surface Green’s function
is the recursive iteration method [25, 26]. Fortunately, the
power of the recursive iteration method is still available here
for calculating the surface Floquet–Green’s function, as well as
the Floquet self-energies, though the space has been enlarged.
For example, the present Floquet Hamiltonian of the αth lead
is given in the Floquet space as

〈i, k|Hα| j, k ′〉 = (ε0
α − kh̄�)δkk′δi j + V α

k′−kδi j + tαδkk′ δi, j±1.

(11)

We note that the Floquet self-energy obtained by the recursive
iteration method is numerically exact and beyond the wide-
band limit. It contains the fine structure of the lead due to its
internal degree of freedom as well as the ac bias. Figure 1
shows the numerically obtained self-energy for semi-infinite
wire in the presence and absence of an ac field. The upper panel
of figure 1 shows the real and imaginary parts of [EL,r

00 ]00 which
are obtained with the harmonic ac bias V (t) = 1.2 cos(0.2t)
and tα = 1. For comparison, the self-energy in the absence
of an ac field is displayed in the lower panel of figure 1. It is
obvious that the ac field has modified the self-energy profile,
especially at the band edges, dramatically.

With the retarded Floquet self-energy to hand, the Floquet
Green’s function of the central dot can be found from

Gr
00(ε) = 1

ε − H0 − EL,r
00 − ER,r

00

, (12)

where H0 = εC(t)c†
0c0−ih̄∂/∂ t and Eα,r

00 is the retarded Floquet
self-energy of the central dot due to its coupling to the αth lead.
For the present Hamiltonian, the matrix element of the Floquet
Hamiltonian is given by 〈0, k|H0|0, k ′〉 = (ε0

C − kh̄�)δkk′ +
(V C

k′−k + Uk′−k). The last two terms represent the ac driving
fields in the central dot where V C arises from external ac
bias while U originates from the internal Coulomb interaction.
The Coulomb field U must be obtained self-consistently as
discussed in the following.

3
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One next needs to have the lesser Green’s function
G<

00(t, t ′) in Floquet space. This double-time function is given
by the Keldysh equation as [6, 7]

G<
00(t, t ′) =

∫
dt1

∫
dt2 Gr

00(t, t1)

×
∑

α=L,R

	
α,<
00 (t1, t2)Ga

00(t2, t ′), (13)

with the lesser self-energy due to the αth lead

	
α,<
00 (t, t ′) = −

∫
dt1 fα(t − t1)(	

α,r
00 (t1, t ′) − 	

α,a
00 (t1, t ′)),

(14)

where fα(t) = ∫
dε fα(ε)e−iεt/2π is the Fourier transform

of the Fermi energy fα(ε) in the αth lead since we have
assumed an equilibrium distribution in the leads [7]. 	

α,a
00 is

the advanced self-energy due to coupling to the αth lead. The
choice of the ac bias in the lead is quite subtle as discussed
in [7]. We introduce the ac bias according to the gage proposed
by Jauho et al [7]. The ac bias makes the electron energy time
dependent while the occupation function in the lead remains
unchanged. Therefore, the Fermi function in the time domain
fα(t) is still a function of the time difference in the present
study. The lesser self-energy in the time domain can also be
decomposed in the Floquet basis. After some algebra, the
lesser self-energy in the Floquet basis E<

00 = ∑
α=L,R Eα,<

00 is
given by

Eα,<
00 (ε) = −[Eα,r

00 (ε) − Eα,a
00 (ε)]Fα(ε), (15)

where Fα is a diagonal matrix and its matrix element with
Floquet index k, k ′ is given by

[Fα(ε)]k,k′ = fα(ε + k�)δkk′ . (16)

Fα , which is a diagonal matrix with an energy shift between
matrix elements, resembles the scalar Fermi function used in
the expression for stationary self-energy.

With the lesser self-energy and the retarded and advanced
Green’s functions obtained above and after some calculations,
the lesser Green’s function defined in equation (13) can be
rewritten in the Floquet basis as

G<
00(ε) = Gr

00(ε)E<
00(ε)Ga

00(ε). (17)

Equation (17) is the Keldysh equation for the lesser
Floquet–Green’s functions. Interestingly, the appearance of
equation (17) resembles greatly the Keldysh equation for
stationary situations. This lesser Floquet–Green’s function
contains information such as the time evolution of the
nonequilibrium distribution in the dot. This enables us
to enclose the self-consistent procedure due to Coulomb
interaction. The electron occupation number in the dot as a
function of time can be written as

nσ (t) = Im
∫

dε

2π
G<

00(t, ε)

= Im
∫

dε

2π

∑

k

[G<
00(ε)]k0e−ik�t . (18)

The Fourier expansion coefficients of nσ (t) determine the ac
driving force produced by the Coulomb interaction.

Finally, by expressing the quantities in the current formula
in terms of the Floquet basis, we arrived at the general
expression for the current in the Floquet–Green’s function as

JL(t) = 4e Re

{∫
dε

2π

∑

k,k′
[Gr

0k;0k′ (ε)E L ,<
k′0 (ε)

+ G<
0k;0k′ (ε)EL,a

k′0 (ε)]e−ik�t

}
. (19)

This formula is the central result of the present work.
It expresses the time-dependent current in terms of the
Floquet–Green’s functions and their corresponding Floquet
self-energies. The interaction effect as well as the ac field in the
central dot can be included in the appropriate Floquet–Green’s
function of the central dot, while the effect of ac bias in leads
is contained in the Floquet self-energy. An analogous formula
can be arrived at for the current flowing to the right lead, JR(t),
though JL(t) may not be equal to JR(t) due to the ac driving.
In the absence of an ac bias in the lead, i.e. where the ac
field is confined in the dot, the Floquet self-energy due to the
semi-infinite lead will be diagonal in the Floquet index k. By
inserting equations (12), (15), and (17) into the current formula
equation (19) and taking the time average, one can readily
recover the averaged current formula given in [21]. In the
above derivations, only single-channel transport is considered.
However, the generalization to ac driven multi-channel cases is
straightforward.

It is interesting to make a brief comparison between the
present formalism and the nonequilibrium Green’s function
formalism for stationary multi-channel transport which can
be found in for example [6] and [7]. The similarity of the
two formalisms to matrix multiplication is obvious. The main
difference is in the matrix basis where the quantities for the
stationary multi-channel case are expanded in the transport
eigenchannels while in ac driving they are expanded in the
Floquet basis. This similarity implies that each Floquet state
may play, to some extent, the role of a transport channel in the
presence of an ac field [2, 27].

3. Current driving by a harmonic ac bias

As an example, we numerically investigated the current
response of a tight-binding wire driven by a harmonic ac bias
by applying the present formalism. The left and right leads are
assumed identical. The dc voltage is V , which shifts the Fermi
energy of the left and right lead as follows: εL

F = ε0
F + V/2

and εR
F = ε0

F − V/2 due to symmetric coupling. Here ε0
F is the

Fermi energy at equilibrium. In the following, we fix ε0
F = 0.

The harmonic bias is applied to the left lead and the central dot
as

VL/C(t) = VL/C cos(�t). (20)

The hopping term in the leads is assumed uniform and fixed
at tL = tR = 1 as the energy unit. The band structure of
the stationary one-dimensional wire is well known to have a
bandwidth of 4tL. Here, the coupling between the lead and the
central dot, tC, may be varied. The level width of the central
dot depends on this coupling. The ratio of the level width of

4
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Figure 2. Time-dependent current through a wire with a single
oscillating site for different level width parameters λ. The ac bias is
depicted as a dotted thin line. The current is given in the units of
h̄ = 1 and e = 1. The charging energy U is taken to be zero.

the central dot and the bandwidth of the lead can be defined as
λ = (tC/tL)2. For λ � 1, the system approaches the wide-
band limit.

By increasing λ, we may check the influence of the finite
bandwidth on the ac response. In figure 2, we show the
time-dependent current for different λ values in the absence
of Coulomb interaction. The ac signal is indicated as a black
dotted line in the figure. The dc bias is V = 0.2. The external
ac field on the left lead is given by VL(t) = 0.2 cos(�t) with
the frequency � = 0.05. The central part is driven by the
same frequency but with different ac strength VC = 0.1. The
temperature kBT = 0.01, where kB is the Boltzmann constant.
The numerical results clearly show that the current response
is sensitive to the band structure. For λ = 0.01, the level
width is much smaller than the bandwidth of the lead. The
transport is in the wide-band limit. For this case, despite the
maximum and minimum values, some oscillation appears in
the current curve. This observation is in accordance with the
ringing phenomenon predicted in previous studies [7] with the
wide-band limit. However, our numerical results show that
the ringing of the current in response to an ac bias cannot
survive when the wide-band limit approximation no longer
holds. As we increase the value of λ, for example to λ = 0.16
in figure 2, the level width increases to be comparable to the
bandwidth. The oscillating structures disappear. The current
curve becomes much smoother than that for the lower λ case.

As the Coulomb effect and other interactions in the
ac response are largely ignored in previous studies, we
numerically investigated the Coulomb effect on the ac response
of a quantum dot. In figure 3, the current response to a
harmonic bias is presented with different Coulomb interaction
strengths U . The ac signal is displayed as a dotted line too.
The other parameters are the same as those for figure 1 except
that we have fixed λ = 0.04 and different values of U . For
the given parameters, figure 3 has shown that on increasing
the Coulomb strength, the fast oscillation in the current for
zero Coulomb field decreases. It tends to follow the external
ac field for very large Coulomb strength. This behavior can be
understood as follows. The complicated oscillation behavior in
the absence of Coulomb interaction arises due to the coherence

Figure 3. Time-dependent current for different Coulomb strengths U
in the presence of an ac field. The ac field is depicted as a dotted thin
line in the figure. The model and other parameters are the same as
those for figure 2 except that we have fixed λ = 0.04.

of the leads and the resonant site [7]. However, the existence of
a Coulomb field can effectively change the energy level as well
as the electron phase evolution. The time-dependent Coulomb
interaction brings decoherence into the electron dynamics.
Obviously, this dephasing effect increases with the Coulomb
strength. Therefore, if the Coulomb strength is large enough,
the coherence of the electrons in the lead and the dot will be
reduced. As a consequence, the ringing of the current response
will be suppressed for large U as shown in figure 3. Therefore,
to experimentally observe the ringing behavior of the current
response predicted in [7], it is better to avoid strong Coulomb
interactions.

4. Conclusion

In summary, a formalism obtained by combining the Floquet
theorem and the nonequilibrium Green’s function has been
presented for studying the transport under periodic ac driving.
The time-dependent current formula was obtained by using the
retarded and lesser Floquet–Green’s functions as well as the
corresponding self-energies. Both the ac bias on the leads
and the finite bandwidth effect can be taken into account in
the self-energy in the Floquet space, which can be obtained
via the recursive iteration method. Moreover, the Coulomb
effect is accounted for in the self-consistent Hartree–Fock
level. Due to the presence of the ac field, the occupations as
well as the Coulomb interaction in the quantum dot become
time dependent. Not only the external ac bias, but also the
time-varying Coulomb field which can modulate the dot level
provides another internal ac field. As an example, the present
formula is applied to the transport of a quantum dot under
harmonic bias. The numerical results show that the band
structure of the leads and the Coulomb effect are paramount
in determining the nonlinear current response to an ac bias.

The model used here is a tight-binding one-dimensional
wire with harmonic oscillation. However a generalization
to multi-channel transport with arbitrary periodic ac field is
straightforward, by expansion of the Floquet space to include
higher harmonics and the transport channels. As a trade-off,
more CPU time is required. We hope the present formalism

5
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based on a tight-binding Hamiltonian may be helpful to the
study of time-dependent transport in molecular electronics
where the band structure of the leads and the Coulomb effect
are expected to play dominant roles. In addition, the formalism
presented above can be used to investigate the transport
through a tight-binding chaotic quantum dot numerically.
These numerical results are believed to be complementary
to the analytical perturbative approaches such as the time-
dependent random matrix method [13].
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